Chem. Ber. 110, 3139-3148 (1977)

Übergangsmetall-Carbin-Komplexe, XXVI¹⁾

Übergangsmetall-Carbin-Komplexe mit Metall-Metall-Bindungen

Ernst Otto Fischer*, Tassilo Lothar Lindner, Fritz Roland Kreißl und Pierre Braunstein*)

Anorganisch-Chemisches Institut der Technischen Universität München, Arcisstr. 21, D-8000 München 2

Eingegangen am 9. Dezember 1976

trans-Bromo(arylcarbin)tetracarbonylwolfram-Komplexe reagieren mit Lithiumiodid unter Ersatz des Halogenliganden. Die Ausweitung dieser Austauschreaktion auf Carbonylmetallat-Anionen und trans-Bromotetracarbonyl(phenylcarbin)-Komplexe von Chrom, Molybdän und Wolfram führt zur Synthese zweikerniger Carbinverbindungen (1-6) mit Metall-Metall-Bindungen. Die spektroskopischen Daten werden diskutiert.

Transition Metal Carbyne Complexes, XXVI¹⁾

Transition Metal Carbyne Complexes with Metal-Metal Bonds

The reaction of *trans*-bromo(arylcarbyne)tetracarbonyltungsten complexes with lithium iodide leads to substitution of the halogene ligand. The extension of this exchange reaction to carbonyl metal anions and *trans*-bromotetracarbonyl(phenylcarbyne) complexes of chromium, molybdenum, and tungsten results in the synthesis of dinuclear carbyne compounds (1-6) with metal-metal bonds. The spectroscopic data are discussed.

Erste Untersuchungen der Carbinkomplex-Chemie befaßten sich mit verschiedenartigen Darstellungsmethoden und der Variation des Übergangsmetalls sowie des Carbinliganden²⁾. Die weiterführende Entwicklung brachte bald den Einsatz der *trans*-Halogeno-(carbin)tetracarbonyl-Komplexe selbst für die Synthese neuer Verbindungen. Neben Reaktionen an der Carbingruppierung³⁾ bot sich der Austausch der Carbonylliganden durch andere Gruppen an⁴⁾. Eine weitere prinzipielle Möglichkeit besteht in der Substitution des zur Carbingruppierung *trans*-ständigen Halogenliganden.

^{*)} Université de Strasbourg, Stipendiat der Alexander-von-Humboldt Stiftung 1975.

¹⁾ XXV. Mitteil.: E. O. Fischer, V. N. Postnov und F. R. Kreißl, J. Organomet. Chem. 127, C 19 (1977).

²⁾ Vgl. E. O. Fischer und U. Schubert, J. Organomet. Chem. 100, 59 (1975).

³⁾ F. R. Kreiβl, J. Organomet. Chem. 99, 305 (1975).

⁴⁾ E. O. Fischer, A. Ruhs und F. R. Kreißl, Chem. Ber. 110, 805 (1977).

[©] Verlag Chemie, GmbH, D-6940 Weinheim, 1977

Präparative Ergebnisse

Der Nachweis der Ersetzbarkeit der Halogengruppe bei Übergangsmetallcarbin-Komplexen gelang in einfachster Weise bereits frühzeitig durch die Umsetzung von trans-Bromo(arylcarbin)tetracarbonylwolfram mit Lithiumiodid in Ether⁵⁾.

$$BrW(CO)_4CR + Lil \xrightarrow{Ether} IW(CO)_4CR + LiBr$$

$$R = C_6H_5, C_6H_4CH_3-(p)$$

Der Einsatz von Carbonylmetallat-Anionen bei dieser Substitutionsreaktion führt zur Darstellung neuer Carbinkomplexe. Dabei reagieren trans-Bromotetracarbonyl(phenylcarbin)-Komplexe von Chrom, Molybdän und Wolfram mit Natriumpentacarbonylmanganat $(-I)^{6}$ und -rhenat $(-I)^{7}$ bei tiefen Temperaturen unter Halogen/Carbonylmetall-Austausch zu neuen, zweikernigen Carbinverbindungen 1-6.

$$(CO)_{5}M'Na + BrM(CO)_{4}CC_{6}H_{5} \xrightarrow{\text{THF}} (CO)_{5}M' - M(CO)_{4}CC_{6}H_{5} + NaBr$$

$$\frac{M}{M' = Mn} \frac{Cr}{1} \frac{Mo}{2} \frac{W}{3}$$

$$\frac{M' = Re}{M' = Re} \frac{Cr}{4} \frac{M}{5} \frac{W}{6}$$

In einer analogen Umsetzung gelingt es auch, Natriumtricarbonyl(cyclopentadienyl)molybdat⁸⁾ und -wolframat⁹⁾ mit trans-Bromotetracarbonyl(phenylcarbin)wolfram unter Bildung von 7, 8 zur Umsetzung zu bringen.

$$\pi - C_5 H_5(CO)_3 M'' Na + Br W(CO)_4 CC_6 H_5 \xrightarrow{\text{THF}} \pi - C_5 H_5(CO)_3 M'' - W(CO)_4 CC_6 H_5 + NaBr$$

$$\xrightarrow{M'' - Mo - W} 7 - 8$$

Die gelben bis orangen Komplexe 1-6 sind in polaren sowie unpolaren organischen Solventien gut löslich; die dunkelroten Verbindungen 7 und 8 dagegen lösen sich in Pentan nur schlecht. Thermisch sind die neuen Carbinkomplexe beständiger als die entsprechenden Bromoverbindungen. Die Stabilität nimmt dabei von den M' - Cr- zu den M' - W-Derivaten zu. Besonders auffallend sind die extremen Stabilitäts-Unterschiede von 2 und 5 im Vergleich zum äußerst thermolabilen $BrMo(CO)_4CC_6H_5$.

Spektroskopische Untersuchungen

IR-Spektren

Bei den Infrarot-Messungen im Bereich der vCO-Schwingungen werden für die Komplexe 1-6 die bei axialer Position des Carbinliganden zu erwartenden fünf Banden (3A₁ und $(2E)^{10}$ beobachtet. Die Verbindungen 7 und 8 zeigen im wesentlichen vier Absorptionen (Tab. 1).

⁵⁾ T. L. Lindner, Diplomarbeit, Techn. Univ. München 1974.

⁶⁾ W. Hieber und G. Wagner, Z. Naturforsch., Teil B 13, 339 (1958).

⁷⁾ W. Hieber, G. Braun und W. Beck, Chem. Ber. 93, 901 (1960).

⁸⁾ R. G. Hayter, Inorg. Chem. 2, 1031 (1963).

⁹⁾ T.S. Piper und G. Wilkinson, J. Inorg. Nucl. Chem. 3, 104 (1956).

¹⁰⁾ M. L. Ziegler, H. Haas und R. K. Sheline, Chem. Ber. 98, 2454 (1965).

1	IR	а	2099 m	2033 s			2019 vs		1979 m	1972 s
2	IR	а	2106 w				2035 vs		1973 m	1956 s
3	IR R	a b	2105 m 2109 s	2043 s 2047 m	2035 vs	2030 sh	2023 vs 2021 m	1984 s	1978 m 1979 m	1963 s 1971 m
4	IR R	a b	2108 ms 2110 w	2038 m 2030 m			2014 vs		1980 s 1982 mw	
5	IR R	a a b	2107 m 2108 s 2106 s	2053 m 2052 mw 2052 m			2026 vs 2036 m 2034 vs		1977 s 1980 s 1984 ms	1972 s 1962 s
6	IR R	a a b	2108 s 2109 s 2108 s	2055 s 2056 mw 2056 mw			2017 vs 2023 vs 2023 vs		1981 s 1986 s 1991 m	1974 m 1968 s
7	IR	а	2075 m	2011 s	1963 sh		1955 vs		1941 vs	
8	IR R	a b	2074 mw	2009 s 1989 s	1960 w		1954 vs 1944 w		1936 s 1912 s	

Tab. 1. IR- und Ramanspektren (R) im vCO-Bereich (a) in Lösung (n-Hexan) und (b) in Festsubstanz bei 120 K (in cm⁻¹)

w = schwach, m = mittel, s = stark, vs = sehr stark, sh = Schulter.

Vernachlässigt man die Kopplung der Schwingungen über die Metall-Metall-Bindung, so lassen sich die IR-Spektren der Komplexe 1-6 durch Überlagerung zweier Gruppen von jeweils drei bzw. zwei Banden erklären. So erinnern die erste, dritte und vierte Bande in Aufspaltung und Intensität an die $A_1^{(2)}$ -, E- und $A_1^{(1)}$ -Schwingungen von RMn(CO)₅-Derivaten¹¹⁾. Die zweite und fünfte Absorption sind dann den A_1 - und E-Schwingungen der M(CO)₄-Gruppierung zuzusprechen. Die starke Verschiebung dieser Banden um ca. 80 cm^{-1} nach tieferen Frequenzen gegenüber der jeweiligen Bromcarbinverbindung ist mit einer verstärkten Rückbindung von den Zentralmetallen Chrom, Molybdän und Wolfram zu den CO-Liganden erklärbar.

Tab. 2 enthält die C-O-Kraftkonstanten der (CO)₅Mn- und (CO)₅Re-Gruppierungen der Komplexe 1-6 nach *Cotton* und *Kraihanzel*¹²⁾ sowie die σ - und π -Bindungsparameter nach *Graham*¹³⁾.

	A ₁ ⁽²⁾	Ε	$A_{1}^{(1)}$	<i>k</i> ₁	k 2	k _i	σ	π
1	2099	2019	1979	15.90	16.87	0.21	0.31	-0.26
2	2106	2035	1973	15.78	17.10	0.19	0.89	-0.61
3	2105	2023	1978	15.89	16.95	0.21	0.48	-0.35
4	2108	2014	1980	15.95	16.86	0.24	0.24	-0.20
5	2107	2026	1977	15.87	17.00	0.21	0.60	-0.42
6	2108	2017	1981	15.96	16.90	0.23	0.31	-0.23

Tab. 2. Vorläufige Zuordnung der vCO-Schwingungen (cm⁻¹) der Gruppen (CO)₅Mn- und (CO)₅Rein 1-6, entsprechende Kraftkonstanten k (mdyn/Å) sowie σ- und π-Parameter (mdyn/Å)

Ein Vergleich mit dem CH₃-Liganden in CH₃Mn(CO)₅ ($\sigma = \pi = 0$) zeigt, daß die M(CO)₄CC₆H₅-Gruppierung als starker σ -Akzeptor und mittlerer π -Donor wirkt.

¹¹⁾ W. Jetz, P. B. Simons, J. A. J. Thompson und W. A. G. Graham, Inorg. Chem. 5, 2217 (1966).

¹²⁾ F. A. Cotton und C. S. Kraihanzel, J. Am. Chem. Soc. 84, 4432 (1962).

¹³⁾ W. A. G. Graham, Inorg. Chem. 7, 315 (1968).

Bemerkenswerterweise verhält sich in $(CO)_5M' - M(CO)_4CC_6H_5$ (M' = Mn, Re) die $M(CO)_4CC_6H_5$ -Gruppe bei gleichem Zentralmetall M ähnlich. Im Falle von M = Cr und W bestehen zwischen den σ - und π -Parametern keine bedeutenden Unterschiede; bei M = Mo beobachtet man hingegen das stärkste σ -Akzeptor- und π -Donorverhalten der $M(CO)_4CC_6H_5$ -Gruppierung.

Ramanspektren

Bei den Ramanspektren lassen sich sieben Banden $(3A_1, 2B_1 \text{ und } 2E)$ voraussagen und werden auch im Falle von 3 beobachtet. Für die Komplexe 4-6 jedoch wird, wie aus Tab. 1 ersichtlich, eine geringere Anzahl von Banden gefunden.

Die stärkste Bande (2035 cm⁻¹) im Ramanspektrum von 3 wird der B₁(Mn)-Schwingung zugeordnet, die, wie erwartet, im IR-Spektrum nicht zu finden ist. Die Berechnung dieser B₁(Mn)-Frequenz nach *Cotton* und *Kraihanzel*¹²) ergibt 2049 cm⁻¹. In den anderen Komplexen dagegen konnte eine B₁(Re)-Schwingung nicht beobachtet werden.

Das Ramanspektrum von 6 in Lösung zeigt deutlich, daß die beiden Banden mit der höchsten Frequenz polarisiert sind und deshalb A₁-Symmetrie haben müssen. Die stärkste Absorption im IR-Spektrum bei 2017 cm⁻¹ – wir ordnen sie der E(Re)-Schwingung zu – tritt auch im Ramanspektrum mit sehr starker Intensität bei 2023 cm⁻¹ auf. Ein ähnliches Verhalten wurde bereits bei Mn₂(CO)₁₀ und Re₂(CO)₁₀ gefunden¹⁴).

Für die Messung der Metall-Metall-Streckschwingungen wurden infrarot- und ramanspektroskopische Untersuchungen im Bereich unterhalb 300 cm⁻¹ bei 120 K durchgeführt. Ramanspektren ließen sich dabei nur für die Komplexe 3, 5 und 6 aufnehmen. Ein Vergleich mit den spektroskopischen Studien von *Risen jr.* et al. an $[(CO)_5Mn - M(CO)_5]^{\oplus 15}$ und $[(CO)_5Re - M(CO)_5]^{\oplus 16}$ erlaubt die Zuordnung der Mn-W-, Re-Mo- und Re-W-Schwingungen. Die erhaltenen Werte von 120, 113 und 109 cm⁻¹ (Raman) bzw. 110, 92 und 98 cm⁻¹ (IR) erscheinen vernünftig; eine mögliche Kombination der infrarot- und ramanerlaubten A₁-Metall-Metall-Streckschwingung mit einer Beuge-

	v(M' - M)	Infrarot $k^{(a)}(M' - M)$	$k^{(b)}(\mathbf{M}' - \mathbf{M})$	v(M' – M)	$\frac{\text{Raman}}{k^{(a)}(M'-M)}$	$k^{(b)}(M'-M)$
3	110 m	0.30	0.92	120 s	0.36	1.10
4	95 s	0.22	0.76			
5	92 s	0.32	0.77	113 s	0.48	1.17
6	98 m	0.52	1.00	109 ms	0.65	1.23
7	107 s	0.42	1.01			
8	105 vs	0.60	1.16			
9				160	0.41	1.47
10				120	0.79	1.38
11	125 s	0.44	1.13			

Tab. 3. Metall-Metall-Streckschwingungsfrequenzen (cm⁻¹) und Kraftkonstanten (mdyn/Å) der Komplexe 3-8 in Festsubstanz bei 120 K sowie von $Mn_2(CO)_{10}$ (9)¹⁷, $Re_2(CO)_{10}$ (10)¹⁸) und $[\pi-C_5H_5MO(CO)_3]_2$ (11)

¹⁴⁾ D. M. Adams, M. A. Hooper und A. Squire, J. Chem. Soc. A 1971, 71.

¹⁵⁾ J. R. Johnson, R. J. Ziegler und W. M. Risen jr., Inorg. Chem. 12, 2349 (1973).

¹⁶⁾ J. R. Johnson, D. M. Duggan und W. M. Risen jr., Inorg. Chem. 14, 1053 (1975).

¹⁷⁾ C. O. Quicksall und T. G. Spiro, Inorg. Chem. 8, 2363 (1969).

¹⁸⁾ F. A. Cotton und R. M. Wing, Inorg. Chem. 4, 1328 (1965).

oder Gitterschwingung geeigneter Symmetrie ist jedoch auch hier nicht auszuschließen. Für eine Beurteilung der Metall-Metall-Bindungsstärken wurden die Kraftkonstanten k(M'-M) nach der zweiatomigen Näherung von *Quicksall* und *Spiro* berechnet¹⁷). Dabei wurde einmal die Masse der Metalle allein $[k^{(a)}(M'-M)]$, einmal die Masse der gesamten Schwingungseinheit $[k^{(b)}(M'-M)]$ als effektive Masse eingesetzt. Die Ergebnisse sind in Tab. 3 zusammengefaßt.

13C-NMR-Spektren

Auffallendstes Merkmal der ¹³C-NMR-Spektren der zweikernigen Carbinkomplexe ist die teilweise starke Verschiebung der beobachteten Resonanzen, die gemäß Tab. 4 zugeordnet werden können. Die bereits IR-spektroskopisch nachgewiesene Verstärkung der d_{π} - p_{π} -Rückbindung zwischen den Zentralmetallen Chrom, Molybdän und Wolfram und den Carbonylliganden zeigt sich auch in einer paramagnetischen Verschiebung der Carbonyl-¹³C-Signale. Bei 5 beträgt die Entschirmung der Carbonylgruppen gegenüber BrMo(CO)₄CC₆H₅ 21 ppm. Der Austausch des Bromliganden durch eine Carbonylmetallgruppierung äußert sich ebenfalls in einer Tieffeldverschiebung der Carbinkohlenstoffresonanz. Im Falle von 7 ist das zugehörige Signal im Vergleich zum Ausgangskomplex um 47 ppm paramagnetisch verschoben.

	C_{Carbin}	CO – M	CO – M'	CPhenyl	C5H2	Solvens	Т (°С)
3	278.6	205.3	22 4.3 216.7	148.6 132.9 131.9 129.4		a	-65
4	321.1	228.8	196.5 184.2	147.7 132.9 131.9 129.4		a	- 40
5	294.0	215.4	199.4 br	146.3 133.1 131.9 129.4		а	- 50
6	280.9	207.3	197.1 br	149.4 132.3 131.4 129.3		a	- 50
7	318.7	198.7	225.5 201.4	164.4 128.0 126.2 121.2	94. 7	Ь	-20
	316.2	197.9	224.8 200.6	163.6 127.1 125.4 120.3	94.3	а	- 30
8	295.7	198.3	214.3 201.1	166.0 128.1 126.0 121.6	93.1	b	0

Tab. 4. ¹³C-NMR-Spektren der Komplexe 3-8 in a [D₈]THF und b CD₂Cl₂ (δ -Werte in ppm, bez. auf [D₈]THF = 67.3 ppm bzw. CD₂Cl₂ = 54.2 ppm)

¹H-NMR-Spektren

In den ¹H-NMR-Spektren (Tab. 5) erscheinen die Signale der Phenylgruppe als Multiplett, die Resonanzen des C_5H_5 -Liganden als Singulett. Der Phenylrest der Komplexe 1-6 zeigt keine charakteristischen Verschiebungen im Vergleich zur jeweiligen Ausgangsverbindung; die entsprechenden Signale von 7 und 8 erscheinen jedoch bei höheren Feldstärken.

	C ₆ H ₅ (5H, m)	<i>T</i> (°C)		$C_{6}H_{5}(5H, m)$	$C_5H_5(5H,s)$	T (°C)
1	7.58	- 20	7	7.25	5.75	-20
3	7.65	-20	8	7.27	5.82	- 10
4	7.64	-10				
5	7.63	20				
6	7.61	-10				

Tab. 5. ¹H-NMR-Daten in CD₂Cl₂ (Chem. Verschiebungen in ppm, relat. int. TMS)

Massenspektren

Bei der massenspektroskopischen Untersuchung zeigen die zweikernigen Übergangsmetallcarbin-Komplexe ein recht einheitliches Verhalten. Wie aus Tab. 6 hervorgeht, findet man neben dem Molekül-Ion die einer schrittweisen Abspaltung der CO-Liganden entsprechenden Bruchstücke. Bei den Komplexen 4 und 6 wird zusätzlich noch eine zweite Fragmentierungsreihe beobachtet, die dem Zerfall der Ionen $M(CO)_4CC_6H_5^+$ entspricht.

Tab. 6. Massenspektren der Komplexe 1-7 (m/e-Werte, bez. auf ⁵²Cr, ⁹⁸Mo, ¹⁸⁴W, ¹⁸⁷Re)

	1	2	3	4	5	6	7
L ⁺	448	494	580	580	626	712	632
$(L - CO)^{+}$	420	_	_	552	598	684	604
$(L - 2CO)^{+}$	392	-	_	524	570	656	576
$(L - 3CO)^{+}$	364			496	542	628	548
$(L - 4CO)^{+}$	336	_	468	468	514	600	520
$(L - 5CO)^{+}$	308	354	440	440	486	572	492
$(L - 6CO)^+$	280	326	412	412	458	544	464
$(L - 7CO)^{+}$	252	298	384	384	430	516	436
$(L - 8 CO)^+$	224	270	356	356	402	488	↓ ^{−C₂H₂}
$(L - 9CO)^{+}$	196	242	328	328	3 7 4	460	410
$(L - 9CO, -C_2H_2)^+$			302	302		434	$\downarrow^{-C_2H_2}$
$(L - 9CO, - 2C_2H_2)^+$				276		408	384
$(L - Re, - 5CO)^+$				253		385	
$(L - Re, - 6CO)^+$				225		357	
$(L - Re, - 7CO)^+$				197		329	
$(L - Re, - 8CO)^+$				169		301	
$(L - Re, - 9CO)^+$				141		273	

Diskussion

Die Metall-Metall-Bindung der Komplexe 1-8 kommt durch Überlappung geeigneter Symmetriekombinationen der (n + 1)s-, $(n + 1)p_z$ - und nd_{z^2} -Orbitale der Metalle zustande, wobei den d_{z^2} -Orbitalen der größte Anteil zufällt. Eine Bewertung der Metall-Metall-Bindungsstärke kann durch einen Vergleich der Kraftkonstanten k(M' - M)erfolgen. Die $k^{(a)}(M' - M)$ -Werte, die den exakten Kraftkonstanten besser als die zu hohen $k^{(b)}(M' - M)$ -Werte entsprechen, nehmen dabei in der Reihenfolge k(Re-Cr) < k(Mn-W) < k(Re-Mo) < k(Mn-Mn) < k(Mo-W) < k(Re-W) < k(Re-W) < k(W-W) < k(Re-Re) zu.

Wie erwartet, beobachten wir eine Zunahme der Metall-Metall-Bindungsstärke innerhalb einer Gruppe mit steigender Molekülmasse. Die Bindung von Rhenium mit der $M(CO)_4CC_6H_5$ -Einheit wird somit von Re-W über Re-Mo zu Re-Cr geschwächt. Dieses Ergebnis stimmt mit der abnehmenden Überlappung des dz²-Orbitals von Re mit den von W über Mo zu Cr immer kleiner werdenden d-Orbitalen überein.

Es ist ferner bemerkenswert, daß in den homo-bimetallischen M'-M'-Verbindungen 9, 10 und 11 (Formeln in Tab. 3) die Metall-Metall-Bindungsstärke immer größer ist als bei den entsprechenden hetero-bimetallischen M'-M-Komplexen. In Re₂(CO)₁₀ haben beide Metallatome eine hohe Kernladung. Damit verbunden ist eine niedrige Orbitalenergie, so daß z. B. auch hier eine starke Bindung beobachtet wird.

Zusätzliche Informationen über den Aufbau und die Bindungsverhältnisse in den zweikernigen Komplexen wurden durch eine Röntgenstrukturanalyse von 5 erhalten¹⁹: die *trans*-CO-Re-Mo-C_{Carbin}-Gruppierung ist streng linear; die Re-Mo-Bindung ist mit 311.1 \pm 0.2 pm als Einfachbindung anzusehen. Der Mo-C_{Carbin}-Abstand beträgt 183.5 \pm 2.5 pm und entspricht innerhalb der Fehlergrenze der Summe der Dreifachbindungsradien von Mo=Mo und C=C.

Da bei bimolekularen Substitutionen die Reaktionsgeschwindigkeit von der Nucleophilie des Reagens abhängt, ist die Kenntnis der nucleophilen Reaktivität der Carbonylmetallate für die Umsetzung von großem Nutzen. Die Reaktionsgeschwindigkeiten dieser Anionen sind in Tab. 7 wiedergegeben²⁰⁾.

Nucleophil	relat. Reaktionsgeschwindigkeit
(CO)₅Re [⊖]	2.5×10^4
π-C₅H₅(CO)₃W [⊖]	500
(CO)₅Mn [⊖]	. 77
π-C ₅ H ₅ (CO) ₃ Mo ^Θ	67
(CO)₄Co [⊖]	1

Tab. 7.	Relative	Reaktionsges	chwindigkeiten	von Carbon	ylmetallaten
		<u> </u>			

Die schnellere Umsetzung von (CO)₅Re^{\ominus} im Vergleich zu π -C₅H₅(CO)₃Mo^{\ominus} wird experimentell bestätigt.

¹⁹⁾ E. O. Fischer, G. Huttner, T. L. Lindner, A. Frank und F. R. Kreiβl, Angew. Chem. 88, 163 (1976); Angew. Chem., Int. Ed. Engl. 15, 157 (1976).

²⁰⁾ R. E. Dessy, R. L. Pohl und R. B. King, J. Am. Chem. Soc. 88, 5122 (1966).

Eine Variation des Liganden X in Carbinkomplexen XW(CO)₄CC₆H₅ zeigt, daß die ¹³C-Chemische Verschiebung des Carbinkohlenstoffatoms in der Reihenfolge Br < (CO)₅Mn < (CO)₅Re < π -C₅H₅(CO)₃W < π -C₅H₅(CO)₃Mo zunimmt; die Verschiebung der Carbonylkohlenstoffatome ändert sich in der Reihenfolge Br < π -C₅H₅(CO)₃Mo < (CO)₅Mn < (CO)₅Mn < (CO)₅Re. Dabei besteht keine Korrelation zwischen nucleophiler Stärke der Carbonylmetallat-Anionen und der ¹³C-Chemischen Entschirmung der genannten Kohlenstoffatome. Ein Vergleich läßt jedoch erkennen, daß die Donorwirkung der Pentacarbonylmetall-Anionen der 7. Nebengruppe und der Carbonyl(cyclopentadienyl)metall-Anionen der 6. Nebengruppe unterschiedliche elektronische Veränderungen in der W(CO)₄CC₆H₅-Gruppierung hervorruft.

Der Deutschen Forschungsgemeinschaft, Bonn-Bad Godesberg, und der BASF AG, Ludwigshafen, danken wir für wertvolle Unterstützung dieser Arbeit.

Experimenteller Teil

IR: Aufnahmen im vCO-Bereich mit einem Perkin-Elmer-Spektrometer, Modell 21. – Ramanspektren: Coderg PH 1 Raman Laser System mit He-Ne-Laser Anregung (632.8 nm, 100 mW). – ¹H-NMR-Spektren: 10–15 proz. Lösungen, teils Varian A-60, teils Jeol C 60 HL-Gerät. – ¹³C-NMR-Spektren: Bruker Multikern Spektrometer HFX-90, 22.63 MHz, mit Zusatz für Tieftemperaturmessungen. – Massenspektren: Atlas CH 4, Ofenionenquelle TO 4.

Darstellung der Verbindungen

Alle Arbeiten wurden unter Luft- und Feuchtigkeitsausschluß in Stickstoffatmosphäre durchgeführt. Die Lösungsmittel waren getrocknet (Na, P_4O_{10}) und N_2 -gesättigt.

Die *trans*-Bromotetracarbonyl(phenylcarbin)-Komplexe von Chrom, Molybdän und Wolfram²¹⁾, Natriumpentacarbonylmanganat $(-1)^{61}$ und -rhenat $(-1)^{71}$ sowie Natriumtricarbonyl-(cyclopentadienyl)molybdat⁸⁾ und -wolframat⁹⁾ wurden nach Literaturangaben dargestellt. Alle Ausbeuten sind auf den eingesetzten Carbinkomplex bezogen.

a) trans-Tetracarbonyliodo(phenylcarbin)wolfram: Zu einer Lösung von 1.0 g (2.15 mmol) BrW(CO)₄CC₆H₅ in 25 ml Ether tropft man bei -20° C eine Lösung von 0.40 g (3.0 mmol) Lithiumiodid in 25 ml Ether. Das Reaktionsgemisch trübt sich dabei durch ausfallendes Lithiumbromid weiß. Anschließend rührt man noch 30 min und zieht das Lösungsmittel i. Hochvak. ab. Der hellgelbe Rückstand wird mit Pentan extrahiert und der Iodocarbinkomplex durch Einengen und Abkühlen der gelben Lösung auf -80° C isoliert. Gelbe Kristalle. Ausb. 0.85 g (83%). IRund ¹H-NMR-Spektren stimmen mit den Literaturangaben²¹) überein.

 $WC_{11}H_5IO_4 \ (511.9) \quad Ber. \ W \ 35.91 \ C \ 25.81 \ H \ 0.98 \ I \ 24.79 \ O \ 12.50 \\ Gef. \ W \ 36.00 \ C \ 25.88 \ H \ 1.04 \ I \ 24.20 \ O \ 12.30 \\ Molmasse \ 512 \ (MS, \ bez. \ auf \ ^{184}W)$

b) trans-Tetracarbonyliodo(4-methylphenylcarbin)wolfram: Analog a) wird 1.0 g (2.1 mmol) BrW(CO)₄CC₆H₄CH₃-(p) mit 0.40 g (3.0 mmol) Lithiumiodid in Ether umgesetzt. Gelbe Kristalle, Schmp. 84 °C (Zers.), Ausb. 0.90 g (82%). – IR (vCO, n-Hexan): 2119 w, 2036 s cm⁻¹. – ¹H-NMR (CD₂Cl₂): δ = 2.28 (s, CH₃), 7.05 (m, aromat. H), 7.33 ppm (m, aromat. H).

 $WC_{12}H_7IO_4$ (525.9) Ber. W 34.95 C 27.41 H 1.34

Gef. W 35.50 C 27.44 H 1.59 Molmasse 526 (MS, bez. auf ¹⁸⁴W)

²¹⁾ E. O. Fischer, G. Kreis, C. G. Kreiter, J. Müller, G. Huttner und H. Lorenz, Angew. Chem. 85, 618 (1973); Angew. Chem., Int. Ed. Engl. 12, 564 (1973).

c) trans-Tetracarbonyl(pentacarbonylmangan) (phenylcarbin) chrom (Mn-Cr) (1): Eine Lösung von 1.09 g (5 mmol) NaMn(CO)₅ in 25 ml THF wird unter kräftigem Rühren zu einer auf -25 °C gekühlten Lösung von 1.67 g (5 mmol) BrCr(CO)₄CC₆H₅ in 25 ml THF getropft. Bei dieser Temp. wird 50 h gerührt, anschließend das Lösungsmittel i. Hochvak. entfernt. Den braunen Rückstand extrahiert man zweimal mit je 50 ml CH₂Cl₂ und filtriert die vereinigten Extrakte durch eine auf -20 °C gekühlte Kieselgelschicht. Das nach Abziehen des Lösungsmittels erhaltene Rohprodukt wird durch Chromatographie auf Kieselgel mit Pentan/CH₂Cl₂ (3:1) bei -20 °C gereinigt. Um-kristallisation aus Pentan ergibt analysenreines 1. Gelbe Kristalle, Schmp. 56-57°C, Ausb. 0.10 g (4.5%).

CrMnC₁₆H₅O₉ (448.1) Ber. C 42.88 H 1.12 Gef. C 43.04 H 1.28 Molmasse 448 (MS, bez. auf ⁵²Cr)

d) trans-Tetracarbonyl(pentacarbonylmangan) (phenylcarbin) molybdän(Mn - Mo) (2): 2.18 g (10 mmol) NaMn(CO)₅ und 3.78 g (10 mmol) BrMo(CO)₄CC₆H₅ werden bei -40° C zur Reaktion gebracht und wie bei c) weiterverarbeitet. Orange Kristalle, Schmp. 88-89.5 °C (Zers.), Ausb. 0.12 g (2.4%).

MnMoC₁₆H₅O₉ (492.1) Ber. Mn 11.16 Mo 19.50 C 39.05 H 1.02 O 29.26 Gef. Mn 11.09 Mo 19.10 C 39.01 H 1.09 O 29.00 Molmasse 494 (MS, bez. auf ⁹⁸Mo)

e) trans-Tetracarbonyl(pentacarbonylmangan)(phenylcarbin)wolfram(Mn - W) (3): Nach c) aus 1.09 g (5 mmol) NaMn(CO)₅ und 2.32 g (5 mmol) BrW(CO)₄CC₆H₅. Orange Kristalle, Schmp. 102-104°C, Ausb. 0.30 g (11%).

f) trans-Tetracarbonyl(pentacarbonylrhenium)(phenylcarbin)chrom(Re - Cr) (4): 1.75 g (5 mmol) NaRe(CO)₅ und 1.67 g (5 mmol) BrCr(CO)₄CC₆H₅ werden in 50 ml THF bei -25 °C 30 min gerührt. Das Lösungsmittel wird anschließend i. Hochvak. entfernt und der rotbraune Rückstand mit CH₂Cl₂ extrahiert. Die folgende Aufarbeitung entspricht c). Gelbe Kristalle, Schmp. 86 °C, Ausb. 1.3 g (45%).

> $CrReC_{16}H_5O_9$ (579.4) Ber. Cr 9.97 Re 32.14 C 33.17 -H 0.87 O 24.85 Gef. Cr 9.03 Re 32.10 C 33.33 H 1.07 O 24.50 Molmasse 580 (MS, bez. auf ⁵²Cr und ¹⁸⁷Re)

g) trans-Tetracarbonyl(pentacarbonylrhenium)(phenylcarbin)molybdän(Re - Mo) (5): Eine THF-Lösung von 1.75g (5 mmol) NaRe(CO)₅ wird bei -25 °C mit 1.89 g (5 mmol) BrMo(CO)₄CC₆H₅ in 25 ml THF umgesetzt. Man rührt 30 min und reinigt den Komplex wie bei c). Orange Kristalle, Schmp. 85 – 87 °C, Ausb. 1.0 g (32%).

> MoReC₁₆H₅O₉ (623.3) Ber. Mo 15.39 C 30.83 H 0.81 O 23.10 Gef. Mo 15.20 C 31.09 H 0.85 O 23.00 Molmasse 626 (MS, bez. auf ⁹⁸Mo und ¹⁸⁷Re)

h) trans-Tetracarbonyl(pentacarbonylrhenium)(phenylcarbin)wolfram(Re - W) (6): 1.75 g (5 mmol) NaRe(CO)₅ und 2.32 g (5 mmol) BrW(CO)₄CC₆H₅ ergeben wie bei f) und Aufarbeitung nach c) orangegelbe Kristalle, Schmp. 101 °C, Ausb. 2.4 g (67%).

ReWC₁₆H₅O₉ (711.3) Ber. Re 26.18 W 25.85 C 27.02 H 0.71 O 20.24 Gef. Re 25.30 W 25.80 C 27.23 H 0.78 O 20.30 Molmasse 712 (MS, bez. auf ¹⁸⁴W und ¹⁸⁷Re) i) trans-Tetracarbonyl(phenylcarbin) [tricarbonyl(π -cyclopentadienyl)molybdän]wolfram-(Mo-W) (7): Zu einer Lösung von 2.32 g (5 mmol) BrW(CO)₄CC₆H₅ in 25 ml THF wird bei -25 °C eine Lösung von 1.34 g (5 mmol) NaMo(CO)₃C₅H₅- π in THF getropft. Das schwarzrote Reaktionsgemisch wird 50 h gerührt und dann wie bei c) weiterbehandelt. Dunkelrote Kristalle, Schmp. 109 - 111 °C (Zers.), Ausb. 0.25 g (8%).

> MoWC₁₉H₁₀O₇ (630.1) Ber. Mo 15.23 W 29.18 C 36.22 H 1.60 O 17.77 Gef. Mo 15.00 W 29.40 C 35.91 H 1.75 O 17.80 Molmasse 632 (MS, bez. auf ⁹⁸Mo und ¹⁸⁴W)

k) trans-Tetracarbonyl(phenylcarbin)[tricarbonyl(π -cyclopentadienyl)wolfram]wolfram(W - W) (8): Aus 1.78 g (5 mmol) NaW(CO)₃C₅H₅- π und 2.32 g (5 mmol) BrW(CO)₄CC₆H₅ analog c). Dunkelrote Kristalle, Schmp. 114.5 - 116 °C, Ausb. 0.32 g (9%).

> W₂C₁₉H₁₀O₇ (718.0) Ber. W 51.21 C 31.79 H 1.40 O 15.60 Gef. W 51.00 C 32.13 H 1.50 O 15.55 Molmasse 703 (osmometr. in CHCl₃)

> > [511/76]